SimReal UiA Logo



001 Square Root - Rational Number

Decide whether or not a square root of a number is rationnal or not.

002 Complex Numbers

Different operations of complex numbers:

- Representations
- Negative
- Conjugate
- Addition
- Multiplication
- Power
- Roots
- Equations

003 Algebra

Different operations in arithmetic and algebra.

004 Algebra

Different operations in arithmetic and algebra.
The same as 003, this time in GeoGebra conneced to SimReal.

004 Line 001

In the graph window we see the graph of a line y = ax + b
Decide the value of a and b.

The application can generate an unlimited number of random exercises.

005 Parabola 001

In the graph window we see the graphs of four parabolas and four function expressions.
Find the on-to-one connection between the graps and the function expressions.

006 Parabola 002

A general expression for a parabola is shown: y = ax2 + bx + c
The coefficients a, b and c are given.
Find some properties of the parabola for these values of the coefficients.

The application can generate an unlimited number of random exercises.

007 Parabola 003

The graph of a parabola function is shown.
Two expressions of the parabola function is given:

y = a(x-b)2 + c
y = ax2 + rx + s

Decide some properties of the parabola function.

The application can generate an unlimited number of random exercises.

The same application in GeoGebra.

008 Parabola 004

The graph of a parabola function is shown.
Two expressions of the parabola function is given:

y = a(x-x0)2 + y0

Decide the values of a, x0 and y0

The application can generate an unlimited number of random exercises.

009 Function 001

The graph of a parabola function is shown.
Two expressions of the parabola function is given:

y = a(x-b)2 + c

y = ax2 + rx + s

Decide the values of a, b, c, r and s

The application can generate an unlimited number of random exercises.

010 Circle 001

The graph of a circle is shown.
Two expressions of the circle function is given:

(x-x0)2 + (y-y0)2 = R2

Decide the values of x0, y0 and R.

The application can generate an unlimited number of random exercises.

011 Ellipse 001

The graph of a ellipse is shown.
Two expressions of the ellipse function is given:

(x-x0)2/a2 + (y-y0)2/b2 Decide the values of a, a, x0 and y0.

The application can generate an unlimited number of random exercises.

012 Equation

Solution of equations and system of equations.

013 Trigonometry

Different kinds of trigonometric exercises.

014 Vector

This is an application that can be used to test addition of vectors.
When the application starts, two random vectors A and B are generated.

Down in the left corner you see a red vector S.
Move and change this vector to visualize the vector sum of A and B.
Then mark the checbox 'Snap to grid'.
Then click the button 'Submit'.
You will have a respons wether your answer is correct or not.

Click the button 'Next' to have a new exercise.
Unmark the checkbox 'Snap to grid' before you try to change the sum vector S, then it's easier to change the vector.
Mark the checkbox again before you click 'Submit'.

015 Exponential- and Logaritmic functions

Different kinds of exponential and logarithmic exercises.

016 Differentiation

In the simulation window you see the graph of a given function f (black color).
In addition you see another graphs (red color).

The question is:
Is the function represented by the red graph
the derivative of the function represented by the black graph?

This application will generate an unlimited number of exercises.


Here is a link to understand the conctruction of the derivate of a function.

017 Linear Algebra

Solution of system of equations by the help of Cramer's Rule (use of determinants).

018 Greens Theorem

Applikasjonen vises et vektorfelt og en lukket kurve i dette vektorfeltet.
Oppgaven går ut på visuelt å bestemme kurveintegral/sirkulasjon og fluks i dette vektorfeltet
ved å visualisere vektorfeltet, dets komponenter, enhetstangentvektor og enhetsnormalvektor.
Videre går oppgaven ut på å visualisere sammenhengen i Greens teorem (tangentiell- og normal-teorem).
Applikasjonen kan automatisk generere ulike vektorfelt.

019 Speed 001

Applikasjonen viser partikkel-bevegelse (posisjonsvektor, hastighetsvektor, akselerasjonvektor og bane) for en gitt parametrisert bane.
Etter noen sekunder endres banen samtidig med at den skjules.
Deretter stopper partikkelen mens øyeblikksverdien av posisjons-, hastighets- og akselerasjons-vektorene vises.
Oppgaven går ut på å bestemme partikklens momentane bevegelsesretning, avbøyning og hvorvidt partikkelen i øyeblikket er i ferd med å øke fartene eller bremse ned.

020 Speed 002

Applikasjonen viser partikkel-bevegelse (posisjonsvektor, hastighetsvektor, akselerasjonvektor og bane) for en gitt parametrisert bane.
Etter noen sekunder endres banen samtidig med at den skjules.
Deretter stopper partikkelen mens øyeblikksverdien av posisjons-, hastighets- og akselerasjons-vektorene vises.
Oppgaven går ut på å bestemme partikklens momentane bevegelsesretning, avbøyning og hvorvidt partikkelen i øyeblikket er i ferd med å øke fartene eller bremse ned.

021 Particle Motion

Applikasjonen viser partikkel-bevegelse (posisjonsvektor, hastighetsvektor, akselerasjonvektor og bane) for en gitt parametrisert bane.
Etter noen sekunder endres banen samtidig med at den skjules.
Deretter stopper partikkelen mens øyeblikksverdien av posisjons-, hastighets- og akselerasjons-vektorene vises.
Oppgaven går ut på å bestemme partikklens momentane bevegelsesretning, avbøyning og hvorvidt partikkelen i øyeblikket er i ferd med å øke fartene eller bremse ned.

022 Python in HTML

Interactive Python applications can be embedded in ordinary web pages.
This way you can public combine text, pictures and other ordinary web elements together with interactive programming.

In this example you see an example of an Python application that draw the graph of two parabolas y = ax2. A custom function is used.
Try to change the custom function so that the graph of two parabolas y = ax2 + b cSSan be drawn.
Advanced graphics is not used in this example.
Click here for Interactive Python in HTML
Click here for Digital Exam with Python and SimReal


MatRIC Logo